Nature Communications (Sep 2024)
Number and dissimilarity of global change factors influences soil properties and functions
Abstract
Abstract Soil biota and functions are impacted by various anthropogenic stressors, including climate change, chemical pollution or microplastics. These stressors do not occur in isolation, and soil properties and functions appear to be directionally driven by the number of global change factors acting simultaneously. Building on this insight, we here hypothesize that co-acting factors with more diverse effect mechanisms, or higher dissimilarity, have greater impacts on soil properties and functions. We created a factor pool of 12 factors and calculated dissimilarity indices of randomly-chosen co-acting factors based on the measured responses of soil properties and functions to the single factors. Results show that not only was the number of factors important, but factor dissimilarity was also key for predicting factor joint effects. By analyzing deviations of soil properties and functions from three null model predictions, we demonstrate that higher factor dissimilarity and a larger number of factors could drive larger deviations from null models and trigger more frequent occurrence of synergistic factor net interactions on soil functions (decomposition rate, cellulase, and β-glucosidase activity), which provides mechanistic insights for understanding high-dimensional effects of factors. Our work highlights the importance of considering factor similarity in future research on interacting factors.