PLoS ONE (Jan 2024)

β2-glycoprotein I promotes the clearance of circulating mitochondria.

  • Swapan Kumar Dasgupta,
  • Jahnavi Gollamudi,
  • Stefanie Rivera,
  • Ross A Poche,
  • Rolando E Rumbaut,
  • Perumal Thiagarajan

DOI
https://doi.org/10.1371/journal.pone.0293304
Journal volume & issue
Vol. 19, no. 1
p. e0293304

Abstract

Read online

β2-glycoprotein I (β2-Gp1) is a cardiolipin-binding plasma glycoprotein. It is evolutionarily conserved from invertebrates, and cardiolipin-bound β2-Gp1 is a major target of antiphospholipid antibodies seen in autoimmune disorders. Cardiolipin is almost exclusively present in mitochondria, and mitochondria are present in circulating blood. We show that β2-Gp1 binds to cell-free mitochondria (CFM) in the circulation and promotes its phagocytosis by macrophages at physiological plasma concentrations. Exogenous CFM had a short circulation time of less than 10 minutes in mice. Following infusion of CFM, β2-Gp1-deficient mice had significantly higher levels of transfused mitochondria at 5 minutes (9.9 ± 6.4 pg/ml versus 4.0 ± 2.3 pg/ml in wildtype, p = 0.01) and at 10 minutes (3.0 ± 3.6 pg/ml versus 1.0 ± 0.06 pg/ml in wild-type, p = 0.033, n = 10). In addition, the splenic macrophages had less phagocytosed CFM in β2-Gp1-deficient mice (24.4 ± 2.72% versus 35.6 ± 3.5 in wild-type, p = 0.001, n = 5). A patient with abnormal β2-Gp1, unable to bind cardiolipin, has increased CFM in blood (5.09 pg/ml versus 1.26 ± 1.35 in normal) and his plasma induced less phagocytosis of CFM by macrophages (47.3 ± 1.6% versus 54.3 ± 1.3, p = 0.01) compared to normal plasma. These results show the evolutionarily conserved β2-Gp1 is one of the mediators of the clearance of CFM in circulation.