آب و فاضلاب (Sep 2019)
Optimization of Red 46 Dye Removal Using Magnetic Polymeric Adsorbent Prepared from Polyacrilonitrile Fibers
Abstract
Textile industry wastewater in additions toxicity for organisms led to changes as decreased of water transparency and sunlight penetration and increase in chemical oxygen demand. Therefore, this study was carried out with the aim of removal of cationic red 46 dye from aqueous solution. For this purpose, the magnetic polymeric composite of graphite oxide nanoparticles (GO) and magnetic nanoparticles (MNP) in the matrix of polyacrilonitrile fiber (WPAN) at micro size by electroespining method was prepared. The XRD and SEM tests were used to determine the polymeric adsorbent characteristics. Magnetic properties of magnetic nanoparticles and polymeric adsorbent were measured at using vibrating sample magnetometer (VSM) analysis. Batch adsorption tests were optimized using the L16 orthogonal array of Taguchi method. The effects of variables including pH, adsorbent dosage, initial dye concentration and contact time on the dye removal were examined and the most influential factor in the removal of dye was pH. The adsorption isotherm data were well-fitted to Freundlich isothermal model (R^2= 0.99). Furthermor, adsorption kinetics of the dye followed pseudo-second-order model. Basic on these results, the polymeric composites was effective adsorbent for dye removal with efficiency over 96% and with quick separation for dye removal from aquatic solution.
Keywords