International Journal of Nanomedicine (Jan 2021)

Use of Novasomes as a Vesicular Carrier for Improving the Topical Delivery of Terconazole: In Vitro Characterization, In Vivo Assessment and Exploratory Clinical Experimentation

  • Mosallam S,
  • Ragaie MH,
  • Moftah NH,
  • Elshafeey AH,
  • Abdelbary AA

Journal volume & issue
Vol. Volume 16
pp. 119 – 132

Abstract

Read online

Shaimaa Mosallam,1 Maha H Ragaie,2 Noha H Moftah,2 Ahmed Hassen Elshafeey,3 Aly Ahmed Abdelbary3,4 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt; 2Department of Dermatology, STD’s and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 4School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, EgyptCorrespondence: Aly Ahmed AbdelbaryDepartment of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, EgyptTel +201149005526Email [email protected]: This manuscript aimed at encapsulating an antifungal terconazole (TCZ) into innovative novasomes for improving its penetration into the skin and clinically modulating its therapeutic efficacy.Methods: Novasomes containing free fatty acid (FFA) as a penetration enhancer were formulated using ethanol injection technique based on 24 full factorial design to explore the impact of various formulation variables on novasomes characteristics regarding entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum formulation was chosen using Design-Expert® software and utilized for further explorations.Results: The chosen formulation (N15; including 100 mg lipid components and Span 80 to oleic acid in a ratio of 2:1 (w/w)) exhibited an EE% = 99.45 ± 0.78%, PS = 623.00 ± 2.97 nm, PDI = 0.40 ± 0.04, and ZP = − 73.85 ± 0.64 mV. N15 showed spherical vesicles with a higher deformability index (DI) (9.62 ± 0.15 g) compared to traditional niosomal formulation (0.92 ± 0.12 g). Further, N15 showed superior inhibition of Candida albicans growth relative to TCZ suspension using XTT (2,3-bis-(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. Moreover, in vivo skin deposition tests revealed a superior TCZ deposition inside the skin from N15 in comparison to traditional niosomal formulation and TCZ suspension. Furthermore, histopathological examination for rats assured the safety of N15 for topical use. A clinical study conducted on infants suffering from napkin candidiasis proved the superiority of N15 to placebo in providing a complete cure of such fungal infections.Conclusion: Concisely, the obtained outcomes confirmed the pronounced efficacy of N15 to successfully treat skin fungal infections.Keywords: terconazole, novasomes, free fatty acid, XTT reduction assay, skin deposition, clinical study

Keywords