Complexity (Jan 2021)

A Novel Particle Swarm Optimization Algorithm Based on Reinforcement Learning Mechanism for AUV Path Planning

  • Haoqian Huang,
  • Chao Jin

DOI
https://doi.org/10.1155/2021/8993173
Journal volume & issue
Vol. 2021

Abstract

Read online

In order to solve the problems of rapid path planning and effective obstacle avoidance for autonomous underwater vehicle (AUV) in 2D underwater environment, this paper proposes a path planning algorithm based on reinforcement learning mechanism and particle swarm optimization (RMPSO). A feedback mechanism of reinforcement learning is embedded into the particle swarm optimization (PSO) algorithm by using the proposed RMPSO to improve the convergence speed and adaptive ability of the PSO. Then, the RMPSO integrates the velocity synthesis method with the Bezier curve to eliminate the influence of ocean currents and save energy for AUV. Finally, the path is developed rapidly and obstacles are avoided effectively by using the RMPSO. Simulation and experiment results show the superiority of the proposed method compared with traditional methods.