PLoS ONE (Jan 2013)

Interaction of G-protein βγ complex with chromatin modulates GPCR-dependent gene regulation.

  • Anushree Bhatnagar,
  • Hamiyet Unal,
  • Rajaganapathi Jagannathan,
  • Suma Kaveti,
  • Zhong-Hui Duan,
  • Sandro Yong,
  • Amit Vasanji,
  • Michael Kinter,
  • Russell Desnoyer,
  • Sadashiva S Karnik

DOI
https://doi.org/10.1371/journal.pone.0052689
Journal volume & issue
Vol. 8, no. 1
p. e52689

Abstract

Read online

Heterotrimeric G-protein signal transduction initiated by G-protein-coupled receptors (GPCRs) in the plasma membrane is thought to propagate through protein-protein interactions of subunits, Gα and Gβγ in the cytosol. In this study, we show novel nuclear functions of Gβγ through demonstrating interaction of Gβ(2) with integral components of chromatin and effects of Gβ(2) depletion on global gene expression. Agonist activation of several GPCRs including the angiotensin II type 1 receptor specifically augmented Gβ(2) levels in the nucleus and Gβ(2) interacted with specific nucleosome core histones and transcriptional modulators. Depletion of Gβ(2) repressed the basal and angiotensin II-dependent transcriptional activities of myocyte enhancer factor 2. Gβ(2) interacted with a sequence motif that was present in several transcription factors, whose genome-wide binding accounted for the Gβ(2)-dependent regulation of approximately 2% genes. These findings suggest a wide-ranging mechanism by which direct interaction of Gβγ with specific chromatin bound transcription factors regulates functional gene networks in response to GPCR activation in cells.