EURASIP Journal on Wireless Communications and Networking (Nov 2017)
Joint resource optimization for secure transmission in cooperative CR networks
Abstract
Abstract In this paper, we investigate the joint resource allocation to provide secure information transmission in a five-node cooperative cognitive radio network, which contains a primary transmitter (PT), a primary receiver (PR), a secondary transmitter (ST), a secondary receiver (SR), and an eavesdropper (E). To ensure the information is securely transmitted, PT and PR use a part of the power to transmit artificial noise (i.e., jamming signal) to confuse the eavesdropper. Specifically, in the first phase, PT transmits its signal, which contains secrecy information and artificial noise, by using all of its power and bandwidth. In the second phase, ST accesses to the PT’s licensed bandwidth as a trusted relay by allocating a fraction of the bandwidth and power to forward PT’s information with decode-and-forward (DF) relaying protocol. As a reward, ST can utilize the remaining bandwidth and power to transmit its own information simultaneously. We study the joint optimization of the time, bandwidth, and power allocation to maximize ST’s transmission rate while satisfying PT’s secrecy transmission rate requirements. Numerical results demonstrate that our strategy can achieve a win-win result.
Keywords