Magnetochemistry (Feb 2019)

Five 2,6-Di(pyrazol-1-yl)pyridine-4-carboxylate Esters, and the Spin States of their Iron(II) Complexes

  • Iurii Galadzhun,
  • Rafal Kulmaczewski,
  • and Malcolm A. Halcrow

DOI
https://doi.org/10.3390/magnetochemistry5010009
Journal volume & issue
Vol. 5, no. 1
p. 9

Abstract

Read online

Two phenyl ester and three benzyl ester derivatives have been synthesized from 2,6-di(pyrazol-1-yl)pyridine-4-carboxylic acid and the appropriate phenyl or benzyl alcohol using N,N’-dicyclohexylcarbodiimide as the coupling reagent. Complexation of the ligands with Fe[BF4]2·6H2O in acetone yielded the corresponding [FeL2][BF4]2 complex salts. Four of the new ligands and four of the complexes have been crystallographically characterised. Particularly noteworthy are two polymorphs of [Fe(L3)2][BF4]2·2MeNO2 (L3 = 3,4-dimethoxyphenyl 2,6-di{pyrazol-1-yl}pyridine-4-carboxylate), one of which is crystallographically characterised as high-spin while the other exhibits the onset of spin-crossover above room temperature. The other complexes are similarly low-spin at low temperature but exhibit gradual spin-crossover on heating, except for an acetone solvate of [Fe(L5)2][BF4]2 (L5 = benzyl 2,6-di{pyrazol-1-yl}pyridine-4-carboxylate), which exhibits a more abrupt spin-transition at T½ = 273 K with 9 K thermal hysteresis.

Keywords