Catalysts (Sep 2020)

Biodiesel Production from Low-Quality Oils Using Heterogeneous Cesium Salts of Vanadium-Substituted Polyoxometalate Acid Catalyst

  • Wenlei Xie,
  • Chunli Gao,
  • Hongyan Wang

DOI
https://doi.org/10.3390/catal10091060
Journal volume & issue
Vol. 10, no. 9
p. 1060

Abstract

Read online

This research aims at developing an efficient and reusable catalyst to improve biodiesel production processes. To achieve this, a vanadium-substituted polyoxometalate (POM) acid, namely H6PV3MoW8O40, was firstly prepared, and then the heterogenzation of the homogeneous Keggin-type heteropoly acids was performed by the partial proton substitution by monovalent large cesium cations with the formation of solid Cs2H4PV3MoW8O40 catalysts. Several techniques, such as X-ray diffractometer, Fourier transform infrared, coupled plasma–atomic emission spectrometry, Diffuse reflectance ultraviolet–visible spectrum, thermal gravimetric analysis and N2 adsorption–desorption techniques, were employed to characterize the as-prepared solid catalyst. The solid acid catalyst had the capacity to catalyze both the transesterification of soybean oil and esterification of free fatty acids (FFAs) simultaneously, providing an efficient production process for the production of biodiesel from low-quality oils. Under the operational conditions of a methanol/oil molar ratio of 30:1, a catalyst dosage of 5 wt.%, a reaction temperature of 140 °C, and a reaction duration of 8 h, an oil conversion of 92.2% was attained with the total FFA transformation to biodiesel. Furthermore, the catalyst could be reutilized for several cycles with no significant drop in its activity, thus having great potential for application with a bright perspective in the production of biodiesel, especially from low-quality oil feedstocks.

Keywords