Geoscientific Model Development (May 2021)
Development and evaluation of spectral nudging strategy for the simulation of summer precipitation over the Tibetan Plateau using WRF (v4.0)
Abstract
Precipitation is the key component determining the water budget and climate change of the Tibetan Plateau (TP) under a warming climate. This high-latitude region is regarded as “the Third Pole” of the Earth and the “Asian Water Tower” and influences the eco-economy of downstream regions. However, the intensity and diurnal cycle of precipitation are inadequately depicted by current reanalysis products and regional climate models (RCMs). Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of RCMs by preventing simulated fields from drifting away from large-scale reference fields, but the most effective manner of applying spectral nudging over the TP is unclear. In this paper, the effects of spectral nudging parameters (e.g., nudging variables, strengths, and levels) on summer precipitation simulations and associated meteorological variables were evaluated over the TP. The results show that using a conventional continuous integration method with a single initialization is likely to result in the over-forecasting of precipitation events and the over-forecasting of horizontal wind speeds over the TP. In particular, model simulations show clear improvements in their representations of downscaled precipitation intensity and its diurnal variations, atmospheric temperature, and water vapor when spectral nudging is applied towards the horizontal wind and geopotential height rather than towards the potential temperature and water vapor mixing ratio. This altering of the spectral nudging method not only reduces the wet bias of water vapor in the lower troposphere of the ERA-Interim reanalysis (when it is used as the driving field) but also alleviates the cold bias of atmospheric temperatures in the upper troposphere, while maintaining the accuracy of horizontal wind features for the regional model field. The conclusions of this study imply how driving field errors affect model simulations, and these results may improve the reliability of RCM results used to study the long-term regional climate change.