Ceramics (Jun 2024)

CaCO<sub>3</sub>-Infused Carbon Fiber Aerogels: Synthesis and Characterization

  • Cristina Mosoarca,
  • Iosif Hulka,
  • Pavel Șchiopu,
  • Florina S. Rus,
  • Radu Bănică

DOI
https://doi.org/10.3390/ceramics7020051
Journal volume & issue
Vol. 7, no. 2
pp. 777 – 795

Abstract

Read online

Carbon aerogels represent a distinctive category of high surface area materials derived from sol-gel chemistry. Functionalizing these aerogels has led to the development of composite aerogels with the potential for a wider range of applications. In this study, the technique of lyophilization was employed to fabricate aerogel composites consisting of inorganic salts and cellulosic fibers. Cellulose carbonization can occur through chemical dehydration by heat treatment in an inert atmosphere. X-ray diffraction analysis spectra and scanning electron microscopy images indicate that the formed polymeric composites contain partially carbonized cellulose fibers, amorphous carbon, and calcium carbonates. CaCO3 primarily forms through the reaction of CaCl2, which moistens cellulose or amorphous carbon fibers with CO2 in ammonia fumes. The water loss in 3D structures was analyzed using thermogravimetric analysis, Fourier Transform Infrared Spectroscopy, and ultraviolet-visible-near-infrared spectroscopy. Depending on the synthesis method, 3D structures can be created from partially or completely dehydrated cellulose fibers. The aerogels were examined for their ability to support the growth of bacterial biofilm and then adorned with metal silver and AgCl to produce bactericidal products. Due to their open pores and CaCO3 content, these aerogels can serve as durable and environmentally friendly thermal insulators with bactericidal properties, as well as a medium for absorbing acidic gases.

Keywords