Frontiers in Molecular Neuroscience (Jan 2023)

Inferring cell developmental stage-specific lncRNA regulation in the developing human neocortex with CDSlncR

  • Meng Huang,
  • Meng Huang,
  • Jiangtao Ma,
  • Jiangtao Ma,
  • Junpeng Zhang

DOI
https://doi.org/10.3389/fnmol.2022.1037565
Journal volume & issue
Vol. 15

Abstract

Read online

Noncoding RNAs (ncRNAs) occupy ~98% of the transcriptome in human, and are usually not translated into proteins. Among ncRNAs, long non-coding RNAs (lncRNAs, >200 nucleotides) are important regulators to modulate gene expression, and are involved in many biological processes (e.g., cell development). To study lncRNA regulation, many computational approaches or tools have been proposed by using bulk transcriptomics data. Nevertheless, previous bulk data-driven methods are mostly limited to explore the lncRNA regulation regarding all of cells, instead of the lncRNA regulation specific to cell developmental stages. Fortunately, recent advance in single-cell sequencing data has provided a way to investigate cell developmental stage-specific lncRNA regulation. In this work, we present a novel computational method, CDSlncR (Cell Developmental Stage-specific lncRNA regulation), which combines putative lncRNA-target binding information with single-cell transcriptomics data to infer cell developmental stage-specific lncRNA regulation. For each cell developmental stage, CDSlncR constructs a cell developmental stage-specific lncRNA regulatory network in the cell developmental stage. To illustrate the effectiveness of CDSlncR, we apply CDSlncR into single-cell transcriptomics data of the developing human neocortex for exploring lncRNA regulation across different human neocortex developmental stages. Network analysis shows that the lncRNA regulation is unique in each developmental stage of human neocortex. As a case study, we also perform particular analysis on the cell developmental stage-specific lncRNA regulation related to 18 known lncRNA biomarkers in autism spectrum disorder. Finally, the comparison result indicates that CDSlncR is an effective method for predicting cell developmental stage-specific lncRNA targets. CDSlncR is available at https://github.com/linxi159/CDSlncR.

Keywords