eLife (Apr 2016)

Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex

  • Ming-Feng Tsai,
  • Charles B Phillips,
  • Matthew Ranaghan,
  • Chen-Wei Tsai,
  • Yujiao Wu,
  • Carole Williams,
  • Christopher Miller

DOI
https://doi.org/10.7554/eLife.15545
Journal volume & issue
Vol. 5

Abstract

Read online

Mitochondrial Ca2+ uptake, a process crucial for bioenergetics and Ca2+ signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca2+-activated Ca2+ channel, with the Ca2+ pore formed by the MCU protein and Ca2+-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca2+ permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca2+ landscape.

Keywords