Energies (Nov 2020)
Flexible Kinetic Energy Release Controllers for a Wind Farm in an Islanding System
Abstract
To improve frequency nadir following a disturbance and avoid under-frequency load shedding, two types of flexible kinetic energy release controllers for the doubly fed induction generator (DFIG) are proposed. The basic idea is to release only a small amount of kinetic energy stored at the DFIG in the initial transient period (1–3 s after the disturbance). When the frequency dip exceeds a preset threshold, the amount of kinetic energy released is increased to improve the frequency nadir. To achieve the goal of flexible kinetic energy release, a deactivation function based integral controller is first presented. To further improve the dynamic frequency response under parameter uncertainties and external disturbances, a second flexible kinetic energy release controller is designed using a proportional-integral controller, with the gains being adapted in real-time with the particle swarm optimization algorithm. Based on the MATLAB/SIMULINK simulation results for a local power system, it is concluded that the frequency nadir can be maintained around the under-frequency load shedding threshold of 59.6 Hz using the proposed controllers.
Keywords