Nanomaterials (Sep 2022)
Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol
Abstract
In this study, we have proposed titania-based photocatalysts modified with copper compounds for hydrogen evolution. Thermal pre-treatment of commercial TiO2 Degussa P25 (DTiO2) and Hombifine N (HTiO2) in the range from 600 to 800 °C was carried out followed by the deposition of copper oxides (1–10 wt. % of Cu). The morphology and chemical state of synthesized photocatalysts were studied using X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and XANES/EXAFS X-ray absorption spectroscopy. Photocatalytic activity was tested in the hydrogen evolution from aqueous solutions of glycerol under ultraviolet (λ = 381 nm) and visible (λ = 427 nm) light. The photocatalysts 2% CuOx/DTiO2 T750 and 5% CuOx/DTiO2 T700 showed the highest activity under UV irradiation (λ = 380 nm), with the rate of H2 evolution at the level of 2.5 mmol (H2) g−1 h−1. Under the visible light irradiation (λ = 427 nm), the highest activity of 0.6 mmol (H2) g−1 h−1 was achieved with the 5% CuOx/DTiO2 T700 photocatalyst. The activity of these photocatalysts is 50% higher than that of the platinized 1% Pt/DTiO2 sample. Thus, it was shown for the first time that a simple heat treatment of a commercial titanium dioxide in combination with a deposition of non-noble metal particles led to a significant increase in the activity of photocatalysts and made it possible to obtain materials that were active in hydrogen production under visible light irradiation.
Keywords