Ultrafast Science (Jan 2022)

Exploring Femtosecond Laser Ablation by Snapshot Ultrafast Imaging and Molecular Dynamics Simulation

  • Jiali Yao,
  • Dalong Qi,
  • Hongtao Liang,
  • Yilin He,
  • Yunhua Yao,
  • Tianqing Jia,
  • Yang Yang,
  • Zhenrong Sun,
  • Shian Zhang

DOI
https://doi.org/10.34133/2022/9754131
Journal volume & issue
Vol. 2022

Abstract

Read online

Femtosecond laser ablation (FLA) has been playing a prominent role in precision fabrication of material because of its circumvention of thermal effect and extremely high spatial resolution. Molecular dynamics modeling, as a powerful tool to study the mechanism of femtosecond laser ablation, still lacks the connection between its simulation results and experimental observations at present. Here we combine a single-shot chirped spectral mapping ultrafast photography (CSMUP) technique in experiment and a three-dimensional two-temperature model-based molecular dynamics (3D TTM-MD) method in theory to jointly investigate the FLA process of bulky gold. Our experimental and simulated results show quite high consistency in time-resolved morphologic dynamics. According to the highly accurate simulations, the FLA process of gold at the high laser fluence is dominated by the phase explosion, which shows drastic vaporized cluster eruption and pressure dynamics, while the FLA process at the low laser fluence mainly results from the photomechanical spallation, which shows moderate temperature and pressure dynamics. This study reveals the ultrafast dynamics of gold with different ablation schemes, which has a guiding significance for the applications of FLA on various kinds of materials.