BioTechniques (May 2003)

Lentivirus Vector Purification Using Anion Exchange HPLC Leads to Improved Gene Transfer

  • Kaoru Yamada,
  • Douglas M. McCarty,
  • Victoria J. Madden,
  • Christopher E. Walsh

DOI
https://doi.org/10.2144/03345dd04
Journal volume & issue
Vol. 34, no. 5
pp. 1074 – 1080

Abstract

Read online

Recombinant lentiviral vectors stably transduce both dividing and nondividing cells. Virus pseudotyping with vesicular stomatitis virus envelope G (VSV-G) protein broadens the host range of lentiviral vector and enables vector concentration by ultracentrifugation. However, as a result of virus vector concentration, contaminating protein debris derived from vector-producing cell culture media is toxic to target cells and reduces the transduction efficiency. Here we report a new and rapid technique for purifying lentivirus vector using the strong anion exchange column that significantly improves gene transfer rates. We purified VSV-G pseudotyped self-inactivating lentivirus vector and obtained two protein elution peaks (Peak 1 and Peak 2) corresponding to transducing activity. Peak 1 viral particles were 4–8 times more effective in transducing target cells than Peak 2 or non-purified (pre-HPLC) viral particles. We used purified lentivirus vector expressing the human Fanconi anemia group A (FANCA) gene to transduce murine hematopoietic stem/progenitor cells. We observed a consistent 2- to 3-fold increase in gene transfer rates using Peak 1 purified virus compared with non-purified virus. We conclude that the purification method using the HPLC system provides the highly purified virus vector that reduces cell toxicity and significantly improves gene transfer in primary cells.