Poultry Science (Jul 2020)

Molecular characteristics of fluoroquinolone-resistant avian pathogenic Escherichia coli isolated from broiler chickens

  • Mi Young Yoon,
  • Yeong Bin Kim,
  • Jong Su Ha,
  • Kwang Won Seo,
  • Eun Bi Noh,
  • Se Hyun Son,
  • Young Ju Lee

Journal volume & issue
Vol. 99, no. 7
pp. 3628 – 3636

Abstract

Read online

Avian pathogenic Escherichia coli (APEC) is a major pathogen in the poultry industry worldwide including Korea. In this study, the phenotypic and genotypic characteristics of 33 fluoroquinolone (FQ)-resistant APEC isolates from broilers were analyzed. All FQ-resistant APEC isolates showed amino acid exchanges at both gyrA and parC and high minimal inhibitory concentrations for FQs. A total of 11 (33.3%) isolates were positive for the plasmid-mediated quinolone resistance (PMQR) genes, qnrA (8 isolates) and qnrS (3 isolates), and showed multidrug resistance. Among the 11 PMQR-positive isolates, 1 and 2 isolates carried blaCTX-1 and blaCTX-15, respectively, as extended-spectrum β-lactamase (ESBL) producers, and the non-ESBL gene, blaTEM-1, was found in 4 isolates. Among 3 aminoglycoside-resistant isolates, aac(3)-II was only detected in 1 isolate. All 8 APEC isolates with resistance to tetracycline carried the tetA gene. Overall, 6 of the 7 trimethoprim-sulfamethoxazole-resistant isolates carried the sul1 or sul2 genes, while only 2 of the 8 chloramphenicol-resistant isolates carried the catA1 gene. Although 9 isolates carried class I integrons, only 4 isolates carried the gene cassettes dfrA12-aadA2 (2 isolates), dfrA17-aadA5 (1 isolate), extX-psp-aadA2 (1 isolate), and dfrA27 (1 isolate). The most common plasmid replicon was FIB (8 isolates, 72.7%), followed by K/B (4 isolates, 36.4%). Antimicrobial resistance monitoring and molecular analysis of APEC should be performed continuously to surveil the transmission between poultry farms.

Keywords