NeuroImage (Jul 2020)

fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex

  • Erin Goddard,
  • Kathy T. Mullen

Journal volume & issue
Vol. 215
p. 116780

Abstract

Read online

Human visual cortex is partitioned into different functional areas that, from lower to higher, become increasingly selective and responsive to complex feature dimensions. Here we use a Representational Similarity Analysis (RSA) of fMRI-BOLD signals to make quantitative comparisons across LGN and multiple visual areas of the low-level stimulus information encoded in the patterns of voxel responses. Our stimulus set was picked to target the four functionally distinct subcortical channels that input visual cortex from the LGN: two achromatic sinewave stimuli that favor the responses of the high-temporal magnocellular and high-spatial parvocellular pathways, respectively, and two chromatic stimuli isolating the L/M-cone opponent and S-cone opponent pathways, respectively. Each stimulus type had three spatial extents to sample both foveal and para-central visual field. With the RSA, we compare quantitatively the response specializations for individual stimuli and combinations of stimuli in each area and how these change across visual cortex. First, our results replicate the known response preferences for motion/flicker in the dorsal visual areas. In addition, we identify two distinct gradients along the ventral visual stream. In the early visual areas (V1–V3), the strongest differential representation is for the achromatic high spatial frequency stimuli, suitable for form vision, and a very weak differentiation of chromatic versus achromatic contrast. Emerging in ventral occipital areas (V4, VO1 and VO2), however, is an increasingly strong separation of the responses to chromatic versus achromatic contrast and a decline in the high spatial frequency representation. These gradients provide new insight into how visual information is transformed across the visual cortex.

Keywords