Energies (Mar 2019)

A Model for Multi-Energy Demand Response with Its Application in Optimal TOU Price

  • Nan Zhao,
  • Beibei Wang,
  • Mingshen Wang

DOI
https://doi.org/10.3390/en12060994
Journal volume & issue
Vol. 12, no. 6
p. 994

Abstract

Read online

With the generalization of the integrated energy system (IES) on the demand side, multi-energy users may participate in a demand response (DR) program based on their flexible consumption of energy. However, since users could choose using alternative energy or transfer energy consumption to other time periods, obtaining response characteristics of this type of DR usually appears more complicated than traditional single-energy DR. To obtain the response characteristic, a response model for multi-energy DR, which reflects the relations between electricity (gas) response and time-of-use (TOU) electric prices, is proposed. The model is characterized by several coefficients which are associated with electric and heat efficiency. The model is obtained through the derivation process of optimizing user’s energy-using problem. Then, as a typical application of the response model, the TOU electric pricing for multi-energy users is able to be formulated by an interior point algorithm after giving the Kuhn-Tucker conditions of the optimal problem. Typical results of the optimal TOU pricing are further illustrated through the formulation on a PJM five-bus test system. It demonstrates that optimal TOU pricing can be effectively pre-calculated by the utility company using the proposed response model.

Keywords