BMC Pharmacology and Toxicology (Apr 2020)

In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol

  • Rajesh Mandil,
  • Atul Prakash,
  • Anu Rahal,
  • S. P. Singh,
  • Deepak Sharma,
  • Rahul Kumar,
  • Satish Kumar Garg

DOI
https://doi.org/10.1186/s40360-020-00405-6
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Living organisms are frequently exposed to more than one xenobiotic at a time either by ingestion of contaminated food/fodder or due to house-hold practices, occupational hazards or through environment. These xenobiotics interact individually or in combination with biological systems and act as carcinogen or produce other toxic effects including reproductive and degenerative diseases. Present study was aimed to investigate the cyto-genotoxic effects of flubendiamide and copper and ameliorative potential of certain natural phyotconstituent antioxidants. Method In vitro cytogenotoxic effects were evaluated by employing battery of assays including Propidium iodide staining, Tunel assay, Micronuclei, DNA fragmentation and Comet assay on isolated splenocytes and their prevention by resveratrol (5 and 10 μM), catechin (10 and 20 μM), curcumin (5 and 10 μM) and α-tocopherol (5, 10 and 20 μM). In vivo study was also undertaken daily oral administration of flubendiamide (200 mg/kg) or copper (33 mg/kg) and both these in combination, and also all these concurrently with of α-tocopherol to Wistar rats for 90 days. Results Flubendiamide and copper produced concentration-dependent cytotoxic effects on splenocytes and at median lethal concentrations, flubendiamide (40 μM) and copper (40 μM) respectively produced 71 and 81% nonviable cells, higher number of Tunel+ve apoptotic cells, 7.86 and 9.16% micronucleus and 22.90 and 29.59 comets/100 cells and DNA fragmentation. In vivo study revealed significant (P < 0.05) increase in level of lipid peroxidation (LPO) and decrease in glutathione peroxidase (GPx), glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities in groups exposed to flubendiamide or copper alone or both these in combination. Histopathological examination of rat spleens revealed depletion of lymphoid tissue, separation of splenocytes and rarification in splenic parenchyma of xenobiotic(s) treated groups. Conclusion Flubendiamide and copper induce oxidative stress and produce cytogenotoxic effects along with histoarchitectural changes in spleen. All four tested natural antioxidants (resveratrol, catechin, curcumin and α-tocopherol) reduced flubendiamide and copper-induced cytotoxic effects in rat splenocytes. Rat splenocytes are very sensitive to flubendiamide and copper-induced cytogenotoxicity, therefore, these can be effectively employed for screening of compounds for their cytogenotoxic potential. α-tocopherol was effective in restoring alterations in oxidative stress biomarkers and preventing histoarchitectural lesions in spleen.

Keywords