Journal of Analytical Science and Technology (Nov 2018)

Determination of cannabinoids in Cannabis sativa L. samples for recreational, medical, and forensic purposes by reversed-phase liquid chromatography-ultraviolet detection

  • Sanja Zivovinovic,
  • Ruth Alder,
  • Martina D. Allenspach,
  • Christian Steuer

DOI
https://doi.org/10.1186/s40543-018-0159-8
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Currently, an increasing demand of cannabis-derived products for recreational and medical use is observed. Therefore, the reliable and fast quantification of cannabinoids in hemp samples is essential for the control of product from Cannabis sativa, L. strains. In general, gas chromatography (GC) is the method of choice for the quantification of cannabinoids whereas this method is time consuming and the detection of acidic precursor is not feasible without derivatization. Methods We report the successful development and validation of an accurate and broadly applicable reversed-phase high-performance liquid chromatography (RP-HPLC) method coupled to an ultra violet (UV) detector including an optimized extraction procedure for the separation and quantification of eight different cannabinoids. Results The optimized method is able to separate cannabidivarin, cannabidiolic acid, cannabigerolic acid, cannabigerol, cannabidiol, cannabinol, Δ9-tetrahydrocannabinol, and tetrahydrocannabinolic acid within 10 min. For all target analytes, the %-Bias at the lower and upper calibration range varied from − 1.3 to 10.3% and from − 3.9 to 8.6%, respectively. The most suitable agent for extracting cannabis plant samples was evaluated to be a mixture of acetonitrile and water in a ratio 1:1. The extraction efficiency was more than 95% for all analytes in recreational hemp samples. Stability studies on acidic cannabinoids showed a high likeliness of decarboxylation at 100 °C and aromatization after exposure to UV light, respectively. A modified loss on drying method revealed a moisture content between 4 and 10%. The developed method was successfully applied to measure the cannabinoid content in recreational and forensic hemp samples representing broad range of cannabinoid amounts and patterns. Conclusion The present work proposes validated methods for the determination of cannabinoids in cannabis samples. The use of RP-HPLC-UV renders this method broadly applicable and allows the detection of acidic precursor in even less time compared to GC-based methods.

Keywords