Applied Sciences (Jun 2024)
Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players
Abstract
This study explored the impact of short rest intervals on resisted sprint training in elite youth soccer players, specifically targeting enhanced initial-phase explosive acceleration without altering sprint mechanics. Fifteen U19 soccer players participated in a randomized crossover design trial, executing two sprint conditions: RST2M (6 sprints of 20 m resisted sprints with 2 min rest intervals) and RST40S (6 sprints of 20 m resisted sprints with 40 s rest intervals), both under a load equivalent to 30% of sprint velocity decrement using a resistance device. To gauge neuromuscular fatigue, countermovement jumps were performed before and after each session, and the fatigue index along with sprint decrement percentage were calculated. Interestingly, the results indicated no significant differences in sprint performance or mechanical variables between RST2M and RST40S, suggesting that the duration of rest intervals did not affect the outcomes. Horizontal resistance appeared to mitigate compensatory patterns typically induced by fatigue in short rest periods, maintaining effective joint movement and hip extensor recruitment necessary for producing horizontal ground forces. These findings propose a novel training strategy that could simultaneously enhance sprint mechanics during initial accelerations and repeated sprint abilities for elite youth soccer players—a methodology not previously employed
Keywords