Applied Sciences (May 2022)
A Discriminative-Based Geometric Deep Learning Model for Cross Domain Recommender Systems
Abstract
Recommender systems (RS) have been widely deployed in many real-world applications, but usually suffer from the long-standing user/item cold-start problem. As a promising approach, cross-domain recommendation (CDR), which has attracted a surge of interest, aims to transfer the user preferences observed in the source domain to make recommendations in the target domain. Traditional machine learning and deep learning methods are not designed to learn from complex data representations such as graphs, manifolds and 3D objects. However, current trends in data generation include these complex data representations. In addition, existing research works do not consider the complex dimensions and the locality structure of items, which however, contain more discriminative information essential for improving the performance accuracy of the recommender system. Furthermore, similar outcomes between test samples and their neighboring training data restrained in the kernel space are not fully realized from the recommended objects belonging to the same object category to capture the embedded discriminative information effectively. These challenges leave the problem of sparsity and the cold-start of items/users unsolved and hence impede the performance of the cross-domain recommender system, causing it to suggest less relevant and undistinguished items to the user. To handle these challenges, we propose a novel deep learning (DL) method, Discriminative Geometric Deep Learning (D-GDL) for cross-domain recommender systems. In the proposed D-GDL, a discriminative function based on sparse local sensitivity is introduced into the structure of the DL network. In the D-GDL, a local representation learning (i.e., a local sensitivity-based deep convolutional belief network) is introduced into the structure of the DL network to effectively capture the local geometric and visual information from the structure of the recommended 3D objects. A kernel-based method (i.e., a local sensitivity deep belief network) is also incorporated into the structure of the DL framework to map the complex structure of recommended objects into high dimensional feature space and achieve an effective recognition result. An improved kernel density estimator is created to serve as a weighing function in building a high dimensional feature space, which makes it more resistant to geometric noise and computation performance. The experiment results show that the proposed D-GDL significantly outperforms the state-of-the-art methods in both sparse and dense settings for cross-domain recommendation tasks.
Keywords