Atmosphere (Jun 2022)

Characteristics of Fine Particulate Matter (PM<sub>2.5</sub>)-Bound n-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in a Hong Kong Suburban Area

  • Yuan Gao,
  • Zhenhao Ling,
  • Zhuozhi Zhang,
  • Shuncheng Lee

DOI
https://doi.org/10.3390/atmos13060980
Journal volume & issue
Vol. 13, no. 6
p. 980

Abstract

Read online

PM2.5 samples were collected at Tung Chung (TC), Hong Kong, during four nonconsecutive months in 2011/2012 to determine the concentrations, seasonal variations, and potential sources of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes (n-C15-n-C35). Samples were analyzed using the thermal desorption gas chromatography/mass spectrometry (TD-GC/MS) method. The concentrations of particulate PAHs ranged from 1.26–13.93 ng/m3 with a mean value of 2.57 ng/m3, dominated by 4-ring species. Phenanthrene (Phe) and fluoranthene (Flu) were the two most abundant species, accounting for 13% and 18%, respectively. The dominant sources of PAHs were coal and biomass burning. The inhalation cancer risk value in our study exceeded 1 × 10−6 but was below 1 × 10−4, implying that the inhalation cancer risk of PAHs at the TC site is acceptable. The average concertation of n-alkanes was 103.21 ng/m3 (ranging from 38.58 to 191.44 ng/m3), and C25 was the most abundant species. Both PAHs and n-alkanes showed higher concentrations in autumn and winter whilst these values were lowest in summer. The carbon preference index (CPI) and percent contribution of wax n-alkanes showed that biogenic sources were the major sources. The annual average contributions of higher plant wax to n-alkanes at TC were over 40%.

Keywords