Land (Jun 2022)

Hydrological Cycle Performance at a Permeable Pavement Site and a Raingarden Site in a Subtropical Region

  • Chi-Feng Chen,
  • Jhe-Wei Lin,
  • Jen-Yang Lin

DOI
https://doi.org/10.3390/land11060951
Journal volume & issue
Vol. 11, no. 6
p. 951

Abstract

Read online

Low-impact development (LID) structures are widely used to mitigate urbanization impacts on hydrology. The performances of such structures are strongly affected by field conditions, such as the ratio of LID area to drainage area and rainfall properties, such as rainfall intensity. In this study, onsite continuous monitoring was performed at a permeable pavement site and a raingarden site in Taipei, Taiwan, to determine their water retention and groundwater recharge potential under subtropical weather. In addition, the verified Storm Water Management Model (SWMM) was used to illustrate the annual performance on the hydrological cycle. Based on one year of monitoring, data on 41 and 24 rainfall events were obtained at the permeable pavement and raingarden sites, respectively. The ratio of the permeable pavement area to the total drainage area was 36.0%, and this ratio was 15.9% for the raingarden. The results showed that the average runoff reduction rate was 14.7% at the permeable pavement site, and 98.3% of the rainfall was retained in the raingarden and an underground storage tank. The validated model showed that the permeable pavement site experienced 45.3% outflow, 31.6% evaporation, and 23.1% infiltration annually. For the raingarden with an underground storage tank, 91.4% of the annual rainfall infiltrated and was stored, with only 4.1% outflow. According to the observed rainfall event performance and the simulated annual performance, the permeable pavement and raingarden performed well in subtropical regions. Pavement that was approximately 1/3 permeable in a drainage area increased infiltration by approximately 20%, and a raingarden with a sufficient underground storage tank preserved over 90% of the rainfall.

Keywords