Fractal and Fractional (Apr 2022)

Optimal Design of TD-TI Controller for LFC Considering Renewables Penetration by an Improved Chaos Game Optimizer

  • Ahmed H. A. Elkasem,
  • Mohamed Khamies,
  • Mohamed H. Hassan,
  • Ahmed M. Agwa,
  • Salah Kamel

DOI
https://doi.org/10.3390/fractalfract6040220
Journal volume & issue
Vol. 6, no. 4
p. 220

Abstract

Read online

This study presents an innovative strategy for load frequency control (LFC) using a combination structure of tilt-derivative and tilt-integral gains to form a TD-TI controller. Furthermore, a new improved optimization technique, namely the quantum chaos game optimizer (QCGO) is applied to tune the gains of the proposed combination TD-TI controller in two-area interconnected hybrid power systems, while the effectiveness of the proposed QCGO is validated via a comparison of its performance with the traditional CGO and other optimizers when considering 23 bench functions. Correspondingly, the effectiveness of the proposed controller is validated by comparing its performance with other controllers, such as the proportional-integral-derivative (PID) controller based on different optimizers, the tilt-integral-derivative (TID) controller based on a CGO algorithm, and the TID controller based on a QCGO algorithm, where the effectiveness of the proposed TD-TI controller based on the QCGO algorithm is ensured using different load patterns (i.e., step load perturbation (SLP), series SLP, and random load variation (RLV)). Furthermore, the challenges of renewable energy penetration and communication time delay are considered to test the robustness of the proposed controller in achieving more system stability. In addition, the integration of electric vehicles as dispersed energy storage units in both areas has been considered to test their effectiveness in achieving power grid stability. The simulation results elucidate that the proposed TD-TI controller based on the QCGO controller can achieve more system stability under the different aforementioned challenges.

Keywords