Batteries (May 2024)

On the Use of Randomly Selected Partial Charges to Predict Battery State-of-Health

  • Søren B. Vilsen,
  • Daniel-Ioan Stroe

DOI
https://doi.org/10.3390/batteries10060193
Journal volume & issue
Vol. 10, no. 6
p. 193

Abstract

Read online

As society becomes more reliant on Lithium-ion (Li-ion) batteries, state-of-health (SOH) estimation will need to become more accurate and reliable. Therefore, SOH modelling is in the process of shifting from using simple and continuous charge/discharge profiles to more dynamic profiles constructed to mimic real operation when ageing the Li-ion batteries. However, in most cases, when ageing the batteries, the same exact profile is just repeated until the battery reaches its end of life. Using data from batteries aged in this fashion to create a model, there is a very real possibility that the model will rely on the built-in repetitiveness of the profile. Therefore, this work will examine the dependence of the performance of a multiple linear regression on the number of charges used to train the model, and their location within the profile used to age the batteries. The investigation shows that it is possible to train models using randomly selected partial charges while still reaching errors as low as 0.5%. Furthermore, it shows that only one randomly sampled partial charge is needed to achieve errors smaller than 1%. Lastly, as the number of randomly sampled partial charges used to train the model increases, the dependence on particular partial charges tends to decrease.

Keywords