International Journal of COPD (Feb 2012)
Efficacy and safety characteristics of mometasone furoate/formoterol fumarate fixed-dose combination in subjects with moderate to very severe COPD: findings from pooled analysis of two randomized, 52-week placebo-controlled trials
Abstract
Donald P Tashkin1, Dennis E Doherty2, Edward Kerwin3, Carlos E Matiz-Bueno4, Barbara Knorr5, Tulin Shekar5, Davis Gates5, Heribert Staudinger51David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY, 3Clinical Research Institute of Southern Oregon, Medford, OR, USA; 4Fundación Salud Bosque, Bogota, Colombia, 5Merck Sharp & Dohme Corp, Whitehouse Station, NJ, USABackground: The clinical efficacy and safety of a mometasone furoate/formoterol fumarate (MF/F) fixed-dose combination formulation administered via a metered-dose inhaler was investigated in patients with moderate to very severe chronic obstructive pulmonary disease (COPD).Methods: Two 52-week, multicenter, double-blind, placebo-controlled trials with identical study designs were conducted in current or ex-smokers (aged ≥40 years), and pooled study results are presented herein. Subjects (n = 2251) were randomized to 26 weeks of twice-daily treatment with MF/F 400/10 µg, MF/F 200/10 µg, MF 400 µg, F 10 µg, or placebo. After the 26-week treatment period, placebo subjects completed the trial and 75% of subjects on active treatment entered a 26-week safety extension. Coprimary efficacy variables were mean changes in forced expiratory volume in one second (FEV1), area under the curve from 0 to 12 hours postdose (AUC0–12 h), and morning predose/trough FEV1 from baseline to the week 13 endpoint. Key secondary efficacy variables were St George’s Respiratory Questionnaire scores, symptom-free nights, time-to-first exacerbation, and partly stable COPD at the week 26 endpoint.Results: In the 26-week treatment period, significantly greater increases in FEV1 AUC0–12 h occurred with MF/F 400/10 versus MF 400 and placebo at the week 13 and week 26 endpoints (P ≤ 0.032). These increases were over three-fold greater with MF/F 400/10 than with MF 400. Also, significantly greater increases in morning predose/trough FEV1 occurred with MF/F 400/10 versus F 10 and placebo at the week 13 endpoint (P < 0.05). The increase was four-fold greater with MF/F 400/10 than with F 10. All active treatment groups achieved minimum clinically important differences from baseline (>4 units) in St George’s Respiratory Questionnaire scores at week 26. Symptom-free nights increased by ≥14% in the MF/F 400/10, MF 400, and F 10 groups (P ≤ 0.033 versus placebo). The incidence of exacerbations was lower in the MF/F groups (≤33.3%) than it was in the MF, formoterol, and placebo groups (≥33.8%) over the 26-week treatment period. The incidence of adverse events was similar in the active-treated and placebo-treated subjects across 26 weeks of treatment. Over the 1-year study period, there were no notable differences in the incidence or types of adverse events between the MF/F 400/10 and MF/F 200/10 groups compared with the MF or formoterol groups. Differences in rates of individual treatment-emergent adverse events were <3% between treatment groups. Rates of pneumonia were low (≤2%) across all treatment groups.Conclusion: Patients treated with MF/F demonstrated significant improvements in lung function, health status, and exacerbation rates. Although significant improvements were seen with both doses, a trend showing a dose-response effect was observed in the lung function measurements.Keywords: COPD, spirometry, exacerbation, inhaled corticosteroid, bronchodilator