International Islamic University Malaysia Engineering Journal (Dec 2019)
UNWEARABLE MULTI-MODAL GESTURES RECOGNITION SYSTEM FOR INTERACTION WITH MOBILE DEVICES IN UNEXPECTED SITUATIONS
Abstract
In this paper, a novel real-time system to control mobile devices, in unexpected situations like driving, cooking and practicing sports, based on eyes and hand gestures is proposed. The originality of the proposed system is that it uses a real-time video streaming captured by the front-facing camera of the device. To this end, three principal modules are charged to recognize eyes gestures, hand gestures and the fusion of these motions. Four contributions are presented in this paper. First, the proposition of the fuzzy inference system in the purpose of determination of eyes gestures. Second, a new database has been collected that is used in the classification of open and closed hand gesture. Third, two descriptors have been combined to have boosted classifiers that can detect hands gestures based on Adaboost detector. Fourth, the eyes and hand gestures are erged to command the mobile devices based on the decision tree classifier. Different experiments were assessed to show that the proposed system is efficient and competitive with other existing systems by achieving a recall of 76.53%, 98 % and 99% for eyes gesture recognition, detection of fist gesture, detection of palm gesture respectively and a success rate of 88% for eyes and hands gestures correlation. ABSTRAK: Kajian ini mencadangkan satu sistem masa nyata bagi mengawal peranti mudah alih, dalam keadaan tak terjangka seperti sedang memandu, memasak dan bersukan, berdasarkan gerakan mata dan tangan. Kelainan sistem yang dicadangkan ini adalah ia menggunakan masa nyata video yang diambil daripada peranti kamera hadapan. Oleh itu, tiga modul utama ini telah ditugaskan bagi mengenal pasti isyarat mata, tangan dan gabungan kedua-dua gerakan. Empat sumbangan telah dibentangkan dalam kajian ini. Anggaran pertama bahawa isyarat gerak mata mempengaruhi sistem secara kabur. Kedua, pangkalan data baru telah dikumpulkan bagi pengelasan isyarat tangan terbuka dan tertutup. Ketiga, dua pemerihal data telah digabungkan bagi merangsangkan pengelasan yang dapat mengesan isyarat tangan berdasarkan pengesan Adaboost. Keempat, gerakan mata dan tangan telah digunakan bagi mengarah peranti mudah alih berdasarkan pengelasan carta keputusan. Eksperimen berbeza telah dijalankan bagi membuktikan bahawa sistem yang dicadang adalah berkesan dan berdaya saing dengan sistem sedia ada. Keputusan menunjukkan 76.53%, 98% dan 99% masing-masing telah dikesan pada pengesanan gerak isyarat mata, genggaman tangan dan tapak tangan, dengan kadar 88% berjaya mengesan gerak isyarat mata dan tangan.
Keywords