European Physical Journal C: Particles and Fields (Dec 2022)
Calibration strategy of the JUNO-TAO experiment
- Hangkun Xu,
- Angel Abusleme,
- Nikolay V. Anfimov,
- Stéphane Callier,
- Agustin Campeny,
- Guofu Cao,
- Jun Cao,
- Cedric Cerna,
- Yu Chen,
- Alexander Chepurnov,
- Yayun Ding,
- Frederic Druillole,
- Andrea Fabbri,
- Zhengyong Fei,
- Maxim Gromov,
- Miao He,
- Wei He,
- Yuanqiang He,
- Joseph Y. K. Hor,
- Shaojing Hou,
- Jianrun Hu,
- Jun Hu,
- Cédric Huss,
- Xiaolu Ji,
- Tao Jiang,
- Xiaoshan Jiang,
- Cécile Jolliet,
- Daozheng Li,
- Min Li,
- Ruhui Li,
- Yichen Li,
- Caimei Liu,
- Mengchao Liu,
- Yunzhe Liu,
- Claudio Lombardo,
- Selma Conforti Di Lorenzo,
- Peizhi Lu,
- Guang Luo,
- Stefano M. Mari,
- Xiaoyan Ma,
- Paolo Montini,
- Juan Pedro Ochoa-Ricoux,
- Yatian Pei,
- Frédéric Perrot,
- Fabrizio Petrucci,
- Xiaohui Qian,
- Abdel Rebii,
- Bedr̆ich Roskovec,
- Arsenij Rybnikov,
- Hans Steiger,
- Xilei Sun,
- Pablo Walker,
- Derun Wang,
- Meifen Wang,
- Wei Wang,
- Wei Wang,
- Zhimin Wang,
- Diru Wu,
- Xiang Xiao,
- Yuguang Xie,
- Zhangquan Xie,
- Wenqi Yan,
- Huan Yang,
- Haifeng Yao,
- Mei Ye,
- Chengzhuo Yuan,
- Kirill Zamogilnyi,
- Liang Zhan,
- Jie Zhang,
- Shuihan Zhang,
- Rong Zhao
Affiliations
- Hangkun Xu
- University of Chinese Academy of Sciences
- Angel Abusleme
- Pontificia Universidad Católica de Chile
- Nikolay V. Anfimov
- Joint Institute for Nuclear Research
- Stéphane Callier
- Organisation de MicroÉlectronique Générale Avancée
- Agustin Campeny
- Pontificia Universidad Católica de Chile
- Guofu Cao
- University of Chinese Academy of Sciences
- Jun Cao
- University of Chinese Academy of Sciences
- Cedric Cerna
- Centre d’Etudes Nucléaires de Bordeaux-Gradignan
- Yu Chen
- Sun Yat-sen University
- Alexander Chepurnov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- Yayun Ding
- University of Chinese Academy of Sciences
- Frederic Druillole
- Centre d’Etudes Nucléaires de Bordeaux-Gradignan
- Andrea Fabbri
- Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre
- Zhengyong Fei
- University of Chinese Academy of Sciences
- Maxim Gromov
- Moscow State University
- Miao He
- University of Chinese Academy of Sciences
- Wei He
- University of Chinese Academy of Sciences
- Yuanqiang He
- Sun Yat-sen University
- Joseph Y. K. Hor
- Sun Yat-sen University
- Shaojing Hou
- Institute of High Energy Physics
- Jianrun Hu
- University of Chinese Academy of Sciences
- Jun Hu
- Institute of High Energy Physics
- Cédric Huss
- Centre d’Etudes Nucléaires de Bordeaux-Gradignan
- Xiaolu Ji
- University of Chinese Academy of Sciences
- Tao Jiang
- Sun Yat-sen University
- Xiaoshan Jiang
- University of Chinese Academy of Sciences
- Cécile Jolliet
- Centre d’Etudes Nucléaires de Bordeaux-Gradignan
- Daozheng Li
- Institute of High Energy Physics
- Min Li
- University of Chinese Academy of Sciences
- Ruhui Li
- University of Chinese Academy of Sciences
- Yichen Li
- University of Chinese Academy of Sciences
- Caimei Liu
- Institute of High Energy Physics
- Mengchao Liu
- Institute of High Energy Physics
- Yunzhe Liu
- University of Chinese Academy of Sciences
- Claudio Lombardo
- INFN Catania and Dipartimento di Fisica e Astronomia dell’Universitá di Catania
- Selma Conforti Di Lorenzo
- Organisation de MicroÉlectronique Générale Avancée
- Peizhi Lu
- Sun Yat-sen University
- Guang Luo
- Sun Yat-sen University
- Stefano M. Mari
- Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre
- Xiaoyan Ma
- University of Chinese Academy of Sciences
- Paolo Montini
- Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre
- Juan Pedro Ochoa-Ricoux
- Pontificia Universidad Católica de Chile
- Yatian Pei
- University of Chinese Academy of Sciences
- Frédéric Perrot
- Centre d’Etudes Nucléaires de Bordeaux-Gradignan
- Fabrizio Petrucci
- Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre
- Xiaohui Qian
- University of Chinese Academy of Sciences
- Abdel Rebii
- Centre d’Etudes Nucléaires de Bordeaux-Gradignan
- Bedr̆ich Roskovec
- Faculty of Mathematics and Physics, Charles University
- Arsenij Rybnikov
- Joint Institute for Nuclear Research
- Hans Steiger
- Physik-Department, Technische Universitä München
- Xilei Sun
- University of Chinese Academy of Sciences
- Pablo Walker
- Pontificia Universidad Católica de Chile
- Derun Wang
- University of Chinese Academy of Sciences
- Meifen Wang
- Institute of High Energy Physics
- Wei Wang
- Sun Yat-sen University
- Wei Wang
- Institute of High Energy Physics
- Zhimin Wang
- University of Chinese Academy of Sciences
- Diru Wu
- University of Chinese Academy of Sciences
- Xiang Xiao
- Sun Yat-sen University
- Yuguang Xie
- University of Chinese Academy of Sciences
- Zhangquan Xie
- University of Chinese Academy of Sciences
- Wenqi Yan
- University of Chinese Academy of Sciences
- Huan Yang
- Institute of High Energy Physics
- Haifeng Yao
- University of Chinese Academy of Sciences
- Mei Ye
- University of Chinese Academy of Sciences
- Chengzhuo Yuan
- University of Chinese Academy of Sciences
- Kirill Zamogilnyi
- Faculty of Physics, Lomonosov Moscow State University
- Liang Zhan
- University of Chinese Academy of Sciences
- Jie Zhang
- University of Chinese Academy of Sciences
- Shuihan Zhang
- Institute of High Energy Physics
- Rong Zhao
- Sun Yat-sen University
- DOI
- https://doi.org/10.1140/epjc/s10052-022-11069-3
- Journal volume & issue
-
Vol. 82,
no. 12
pp. 1 – 14
Abstract
Abstract The Taishan Antineutrino Observatory (TAO or JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). Located near a reactor of the Taishan Nuclear Power Plant, TAO will measure the reactor antineutrino energy spectrum with an unprecedented energy resolution of $$<2\%$$ < 2 % at 1 MeV. Energy calibration is critical to achieve such a high energy resolution. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS), multiple radioactive sources are deployed to various positions in the TAO detector for energy calibration. The residual non-uniformity can be controlled within 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. The uncertainty of the non-linear energy response can be controlled within 0.6% with the radioactive sources of various energies, and could be further improved with cosmogenic $$^{12}{\textrm{B}}$$ 12 B which is produced by the interaction of cosmic muon in the liquid scintillator. The stability of other detector parameters, e.g., the gain of each Silicon Photo-multiplier, will be monitored with an ultraviolet LED calibration system.