Antibodies (Mar 2022)
Highly Specific Monoclonal Antibody Targeting the Botulinum Neurotoxin Type E Exposed SNAP-25 Neoepitope
Abstract
Botulinum neurotoxin type E (BoNT/E), the fastest acting toxin of all BoNTs, cleaves the 25 kDa synaptosomal-associated protein (SNAP-25) in motor neurons, leading to flaccid paralysis. The specific detection and quantification of the BoNT/E-cleaved SNAP-25 neoepitope can facilitate the development of cell-based assays for the characterization of anti-BoNT/E antibody preparations. In order to isolate highly specific monoclonal antibodies suitable for the in vitro immuno-detection of the exposed neoepitope, mice and rabbits were immunized with an eight amino acid peptide composed of the C-terminus of the cleaved SNAP-25. The immunized rabbits developed a specific and robust polyclonal antibody response, whereas the immunized mice mostly demonstrated a weak antibody response that could not discriminate between the two forms of SNAP-25. An immune scFv phage-display library was constructed from the immunized rabbits and a panel of antibodies was isolated. The sequence alignment of the isolated clones revealed high similarity between both heavy and light chains with exceptionally short HCDR3 sequences. A chimeric scFv-Fc antibody was further expressed and characterized, exhibiting a selective, ultra-high affinity (pM) towards the SNAP-25 neoepitope. Moreover, this antibody enabled the sensitive detection of cleaved SNAP-25 in BoNT/E treated SiMa cells with no cross reactivity with the intact SNAP-25. Thus, by applying an immunization and selection procedure, we have isolated a novel, specific and high-affinity antibody against the BoNT/E-derived SNAP-25 neoepitope. This novel antibody can be applied in in vitro assays that determine the potency of antitoxin preparations and reduce the use of laboratory animals for these purposes.
Keywords