SN Applied Sciences (May 2021)

Design of a fuzzy PID controller for a MEMS tunable capacitor for noise reduction in a voltage reference source

  • Ehsan Ranjbar,
  • Mohammad Bagher Menhaj,
  • Amir Abolfazl Suratgar,
  • Javier Andreu-Perez,
  • Mukesh Prasad

DOI
https://doi.org/10.1007/s42452-021-04585-6
Journal volume & issue
Vol. 3, no. 6
pp. 1 – 17

Abstract

Read online

Abstract This study presents a conventional Ziegler-Nichols (ZN) Proportional Integral Derivative (PID) controller, having reviewed the mathematical modeling of the Micro Electro Mechanical Systems (MEMS) Tunable Capacitors (TCs), and also proposes a fuzzy PID controller which demonstrates a better tracking performance in the presence of measurement noise, in comparison with conventional ZN-based PID controllers. Referring to importance and impact of this research, the proposed controller takes advantage of fuzzy control properties such as robustness against noise. TCs are responsible for regulating the reference voltage when integrated into Alternating Current (AC) Voltage Reference Sources (VRS). Capacitance regulation for tunable capacitors in VRS is carried out by modulating the distance of a movable plate. A successful modulation depends on maintaining the stability around the pull-in point. This distance regulation can be achieved by the proposed controller which guarantees the tracking performance of the movable plate in moving towards the pull-in point, and remaining in this critical position. The simulation results of the tracking performance and capacitance tuning are very promising, subjected to measurement noise. Article Highlights This article deals with MEMS tunable capacitor dynamics and modeling, considering measurement noise. It designs and applies fuzzy PID control system for regulating MEMS voltage reference output. This paper contributes to robustness increase in pull-in performance of the tunable capacitor.

Keywords