Gels (Jun 2024)

Keratin–PNIPAM Hybrid Microgels: Preparation, Morphology and Swelling Properties

  • Elena Buratti,
  • Maddalena Sguizzato,
  • Giovanna Sotgiu,
  • Roberto Zamboni,
  • Monica Bertoldo

DOI
https://doi.org/10.3390/gels10060411
Journal volume & issue
Vol. 10, no. 6
p. 411

Abstract

Read online

Combinations of synthetic polymers, such as poly(N-isopropylacrylamide) (PNIPAM), with natural biomolecules, such as keratin, show potential in the field of biomedicine, since these hybrids merge the thermoresponsive properties of PNIPAM with the bioactive characteristics of keratin. This synergy aims to produce hybrids that can respond to environmental stimuli while maintaining biocompatibility and functionality, making them suitable for various medical and biotechnological uses. In this study, we exploit keratin derived from wool waste in the textile industry, extracted via sulfitolysis, to synthesize hybrids with PNIPAM microgel. Utilizing two distinct methods—polymerization of NIPAM with keratin (HYB-P) and mixing preformed PNIPAM microgels with keratin (HYB-M)—resulted in hybrids with 20% and 25% keratin content, respectively. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) analyses indicated the formation of colloidal systems with particle sizes of around 110 nm for HYB-P and 518 nm for HYB-M. The presence of keratin in both systems, 20% and 25%, respectively, was confirmed by spectroscopic (FTIR and NMR) and elemental analyses. Distinct structural differences were observed between HYB-P and HYB-M, suggesting a graft copolymer configuration for the former hybrid and a complexation for the latter one. Furthermore, these hybrids demonstrated temperature responsiveness akin to PNIPAM microgels and pH responsiveness, underscoring their potential for diverse biomedical applications.

Keywords