Scientific Reports (Mar 2021)

Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study

  • Muhammad Faizan,
  • K. C. Bhamu,
  • Ghulam Murtaza,
  • Xin He,
  • Neeraj Kulhari,
  • Murefah Mana AL‐Anazy,
  • Shah Haidar Khan

DOI
https://doi.org/10.1038/s41598-021-86145-x
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.