Polymers (Apr 2022)

Ternary Electrical Memory Devices Based on Polycarbazole: SnO<sub>2</sub> Nanoparticles Composite Material

  • Yingna Zhang,
  • Feng Dou,
  • Yijia Zhou,
  • Xiaofeng Zhao,
  • Jiangshan Chen,
  • Cheng Wang,
  • Shuhong Wang

DOI
https://doi.org/10.3390/polym14071494
Journal volume & issue
Vol. 14, no. 7
p. 1494

Abstract

Read online

In this paper, a D–A polymer (PIB) containing carbazole as the donor group in the main chain and benzimidazole benzisoindolinone as the acceptor group was synthesized by Suzuki reaction. The Suzuki reaction, also known as the Suzuki coupling reaction, is a relatively new organic coupling reaction in which aryl or alkenyl boronic acids or boronic acid esters react with chlorine, bromine, iodoaromatic hydrocarbons or alkenes under the catalysis of zerovalent palladium complexes cross-coupling. A series of devices were fabricated by a spin-coating approach, and the devices all exhibited ternary resistance switching storage behavior. Among them, the composite device with the mass fraction of SnO2 NPs of 5 wt% has the best storage performance, with a threshold voltage of −0.4 V and a switching current ratio of 1:101.5:104.5. At the same time, the current of the device remained stable after a 3-h test. Furthermore, after 103 cycles, the current has no obvious attenuation. The device has good stability and continuity. Moreover, the conduction mechanism is further revealed. Inorganic nanoparticle composite devices have splendid memory performances and exhibit underlying application significance in storing data.

Keywords