Sensors (Sep 2021)

An Extended Modular Processing Pipeline for Event-Based Vision in Automatic Visual Inspection

  • Moritz Beck,
  • Georg Maier,
  • Merle Flitter,
  • Robin Gruna,
  • Thomas Längle,
  • Michael Heizmann,
  • Jürgen Beyerer

DOI
https://doi.org/10.3390/s21186143
Journal volume & issue
Vol. 21, no. 18
p. 6143

Abstract

Read online

Dynamic Vision Sensors differ from conventional cameras in that only intensity changes of individual pixels are perceived and transmitted as an asynchronous stream instead of an entire frame. The technology promises, among other things, high temporal resolution and low latencies and data rates. While such sensors currently enjoy much scientific attention, there are only little publications on practical applications. One field of application that has hardly been considered so far, yet potentially fits well with the sensor principle due to its special properties, is automatic visual inspection. In this paper, we evaluate current state-of-the-art processing algorithms in this new application domain. We further propose an algorithmic approach for the identification of ideal time windows within an event stream for object classification. For the evaluation of our method, we acquire two novel datasets that contain typical visual inspection scenarios, i.e., the inspection of objects on a conveyor belt and during free fall. The success of our algorithmic extension for data processing is demonstrated on the basis of these new datasets by showing that classification accuracy of current algorithms is highly increased. By making our new datasets publicly available, we intend to stimulate further research on application of Dynamic Vision Sensors in machine vision applications.

Keywords