Fermentation (Jul 2024)
The Anti-Methanogenic Activity of Lovastatin in Batch Cultures Using Rumen Inoculum from Sheep, Goats, and Cows
Abstract
Enteric methanogenesis in ruminants is identified as one of the primary anthropogenic sources of total atmospheric methane. Recent evidence suggests that rumen methanogenesis is significantly suppressed by lovastatin. Nevertheless, it has not been reported whether the methane reduction by lovastatin depends on ruminant livestock type, nor has fiber degradability been examined. The current research aimed to analyze the in vitro effect of lovastatin on the major fermentation end-products, gas production (GP) kinetics, and fiber degradation of a forage-based diet using rumen inoculum from sheep, goats, and cows. The experiment was conducted as a 3 × 3 factorial arrangement of treatments (dose of lovastatin: 0, 80, and 160 mg/L and three inoculum sources) in a completely randomized design. The results suggested that lovastatin did not affect the GP kinetics parameters. The anti-methanogenic properties of lovastatin were variable depending on dose and inoculum source. Lovastatin demonstrated a superior methane-lowering effect in sheep rumen inoculum compared with goat and cow inocula. The total volatile fatty acid (VFA) production was unaffected by lovastatin, but changes in acetate and valerate proportions were registered. Remarkably, lovastatin decreased the NH3-N concentration with goat and sheep inocula and the in vitro neutral fiber detergent (NDF) degradation for all inoculum sources.
Keywords