Energies (Aug 2021)
Battery Energy Storage Contribution to System Adequacy
Abstract
The objective of this paper is to evaluate the contribution of energy storage systems to resource adequacy of power systems experiencing increased levels of renewables penetration. To this end, a coherent methodology for the assessment of system capacity adequacy and the calculation of energy storage capacity value is presented, utilizing the Monte Carlo technique. The main focus is on short-duration storage, mainly battery energy storage systems (BESS), whose capacity values are determined for different power and energy configurations. Alternative operating policies (OPs) are implemented, prioritizing system cost or reliability, to demonstrate the significant effect storage management may have on its contribution to system adequacy. A medium-sized island system is used as a study case, applying a mixed integer linear programming (MILP) generation scheduling model to simulate BESS and system operation under each OP, in order to determine capacity contribution and overall performance in terms of renewable energy sources (RES) penetration, system operating cost and BESS lifetime expectancy. This study reveals that BESS contribution to system adequacy can be significant (capacity credit values up to ~85%), with energy capacity proving to be the most significant parameter. Energy storage may at the same time enhance system reliability, reduce generation cost and support RES integration, provided that it is appropriately managed; a combined reliability-oriented and cost-driven management approach is shown to yield optimal results.
Keywords