Cellular and Molecular Gastroenterology and Hepatology (Jan 2018)

E47 Governs the MYC-CDKN1B/p27KIP1-RB Network to Growth Arrest PDA Cells Independent of CDKN2A/p16INK4A and Wild-Type p53Summary

  • Kathleen M. Scully,
  • Reyhaneh Lahmy,
  • Lia Signaevskaia,
  • Roman Sasik,
  • Rachel Medal,
  • Heejung Kim,
  • Randall French,
  • Brian James,
  • Yifan Wu,
  • Andrew M. Lowy,
  • Pamela Itkin-Ansari

Journal volume & issue
Vol. 6, no. 2
pp. 181 – 198

Abstract

Read online

Background & Aims: Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. Methods: RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated β-galactosidase activity assays identified cellular senescence. Results: E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated β-galactosidase activity and altered expression of senescence markers. Conclusions: E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327. Keywords: Pancreatic Ductal Adenocarcinoma, bHLH, Cell Cycle, Senescence