Heliyon (May 2023)

Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell

  • Welela Meka Kedir,
  • Kokob Teshome Wondimu,
  • Getabalew Shifera Weldegrum

Journal volume & issue
Vol. 9, no. 5
p. e16475

Abstract

Read online

Currently, research has diverted toward generating renewable fuels due to the unreliable supply and rising cost of conventional fuels. Biodiesel is renewable fuel commonly obtainable via a simple process. Biodiesel was produced via the transterification of waste cooking oil (WCO) using heterogeneous catalysts. The aim of this study was to synthesis a ZnO and TiO2-supported CaO catalyst from a snail shell for the transterification of waste cooking palm oil to produce biodiesel. Sol-gel and wet-impregnated methods were adopted to synthesize ZnO and catalyst, respectively. The physicochemical properties of waste cooking oil and biodiesel were characterized in accordance to AOAC and ASTMD standard methods. The FTIR and XRD analyses were carried out to characterize the biodiesel and the prepared catalysts. The result of this study revealed that CaO catalyst derived from snail shall, resulted to a WCO-derived biodiesel yield of 80%. The CaO catalyst modified with ZnO and TiO2, further led to an increased biodiesel of 90% and 95%, respectively. The result of this study showed that the optimum conditions associated with highest biodiesel yield over the synthesized catalysts were at 3% catalyst weight, 65 °C, a 6:1 methanol-to-oil ratio and 3-h reaction time. The FTIR spectra also proved successful formation of biodiesel. Biodiesel was successfully synthesized from WCO, and the CaO catalyst synthesized from snail shells and modified with ZnO and TiO2, showed potential to substitute for costly catalysts derived from chemical reagents for biodiesel production.

Keywords