JMIR Mental Health (Oct 2024)

Large Language Models for Mental Health Applications: Systematic Review

  • Zhijun Guo,
  • Alvina Lai,
  • Johan H Thygesen,
  • Joseph Farrington,
  • Thomas Keen,
  • Kezhi Li

DOI
https://doi.org/10.2196/57400
Journal volume & issue
Vol. 11
p. e57400

Abstract

Read online

BackgroundLarge language models (LLMs) are advanced artificial neural networks trained on extensive datasets to accurately understand and generate natural language. While they have received much attention and demonstrated potential in digital health, their application in mental health, particularly in clinical settings, has generated considerable debate. ObjectiveThis systematic review aims to critically assess the use of LLMs in mental health, specifically focusing on their applicability and efficacy in early screening, digital interventions, and clinical settings. By systematically collating and assessing the evidence from current studies, our work analyzes models, methodologies, data sources, and outcomes, thereby highlighting the potential of LLMs in mental health, the challenges they present, and the prospects for their clinical use. MethodsAdhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, this review searched 5 open-access databases: MEDLINE (accessed by PubMed), IEEE Xplore, Scopus, JMIR, and ACM Digital Library. Keywords used were (mental health OR mental illness OR mental disorder OR psychiatry) AND (large language models). This study included articles published between January 1, 2017, and April 30, 2024, and excluded articles published in languages other than English. ResultsIn total, 40 articles were evaluated, including 15 (38%) articles on mental health conditions and suicidal ideation detection through text analysis, 7 (18%) on the use of LLMs as mental health conversational agents, and 18 (45%) on other applications and evaluations of LLMs in mental health. LLMs show good effectiveness in detecting mental health issues and providing accessible, destigmatized eHealth services. However, assessments also indicate that the current risks associated with clinical use might surpass their benefits. These risks include inconsistencies in generated text; the production of hallucinations; and the absence of a comprehensive, benchmarked ethical framework. ConclusionsThis systematic review examines the clinical applications of LLMs in mental health, highlighting their potential and inherent risks. The study identifies several issues: the lack of multilingual datasets annotated by experts, concerns regarding the accuracy and reliability of generated content, challenges in interpretability due to the “black box” nature of LLMs, and ongoing ethical dilemmas. These ethical concerns include the absence of a clear, benchmarked ethical framework; data privacy issues; and the potential for overreliance on LLMs by both physicians and patients, which could compromise traditional medical practices. As a result, LLMs should not be considered substitutes for professional mental health services. However, the rapid development of LLMs underscores their potential as valuable clinical aids, emphasizing the need for continued research and development in this area. Trial RegistrationPROSPERO CRD42024508617; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=508617