Фізико-математична освіта (Nov 2023)
ФОРМУВАННЯ ПОНЯТТЯ ПЛОСКОГО РОЗМІЩЕННЯ ТОЧОК ЗАСОБАМИ МЕТРИЧНОЇ ГЕОМЕТРІЇ ПРИ ВИВЧЕННІ МЕТРИЧНИХ ПРОСТОРІВ
Abstract
Постановка проблеми. При вивченні метричних просторів у здобувачів вищої освіти часто виникають труднощі з розумінням основних понять та властивостей цих просторів. Це, у значній мірі, є наслідком значного рівня формалізації таких понять з одного боку, та збереження відповідних формулювань та назв, звичних для здобувачів зі шкільного курсу математики. Найпростіші поняття взаємного розміщення точок метричного простору, наприклад, прямолінійність їх розміщення, у різних просторах можуть набувати різних властивостей. Інколи ці властивості ніяким чином не узгоджуються з відповідними властивостями у звичних для здобувачів евклідових просторах. Для подолання вказаних труднощів доцільно використовувати методи геометричної інтерпретації та візуалізації цих властивостей. Доцільним, при цьому, є використання елементів метричної геометрії. Її методи дозволяють інтерпретувати геометричні особливості взаємного розміщення точок метричного простору у звичних для здобувачів вищої освіти декартових (прямокутних) системах координат. Більше того, стає можливим візуалізація цих особливостей за допомогою графічних редакторів, оскільки вони, як правило, використовують числові значення координат точок для їх візуалізації. У роботі наведено приклади візуалізації властивості плоского розміщення чотирьох точок неевклідового метричного простору у прямокутній тривимірній системі координат. Матеріали та методи. Результати роботи отримані на підставі аналізу діючих підручників з вищої математики для закладів вищої освіти, наукових публікацій та апробовані при читанні відповідного спецкурсу студентам спеціальності «014.04 Середня освіта (математика)» магістерського рівня вищої освіти. Для отримання зображень використовувалось динамічне геометричне середовище GeoGebra 3D. Результати. На основі означення кута як упорядкованої трійки точок довільного метричного простору, та кутової характеристики цього кута, встановлено факт плоского розміщення чотирьох точок неевклідового метричного простору, та наведено приклади цифрової візуалізації цього розміщення за допомогою динамічного геометричного середовища GeoGebra 3D. Така візуалізація дає можливість знайомити здобувачів вищої освіти з найпростішими особливостями неевклідових геометрій. Висновки. Аналітичний апарат метричної геометрії дає можливість сформувати узагальнене поняття плоского розміщення точок довільного метричного простору. Використання цифрових технологій, зокрема графічних редакторів, дозволяє зробити візуалізацію окремих особливостей взаємного розміщення точок довільного метричного простору. Використання достатньо простих аналітичних перетворень при побудові поняття плоского розміщення точок робить можливим знайомство здобувачів загальної середньої освіти, які навчаються у профільних класах з поглибленим вивченням математики, з основами неевклідових геометрій.
Keywords