Heliyon (May 2024)

Abscisic acid and glycine betaine-mediated seed and root priming enhance seedling growth and antioxidative defense in wheat under drought

  • Artho Baroi,
  • Sadia Afroz Ritu,
  • Md. Shihab Uddine Khan,
  • Md. Nesar Uddin,
  • Md. Alamgir Hossain,
  • Md. Sabibul Haque

Journal volume & issue
Vol. 10, no. 9
p. e30598

Abstract

Read online

The extent of drought tolerance in the seedlings of three wheat cultivars (WMRI-1, BARI GOM-33 and BARI GOM-21) was investigated by seed and root priming using abscisic acid (ABA) and glycine betaine (GB). The seeds were primed with ABA (10 and 20 μM) and GB (50 and 100 mM) and grown in pots maintaining control (0 % PEG) and drought (10 % PEG) conditions. Under drought, the root and shoot length, root and shoot biomass were significantly increased in ABA and GB primed seedlings than non-primed seedlings in all cultivars. Among the priming agents, either 20 μM ABA or 50 mM GB triggered better seedling growth in all wheat cultivars. These two levels were then applied with the nutrient solution in the hydroponics following four treatments: Control, Drought, Drought + ABA and Drought + GB. The seedling growth significantly declined in drought, while an improved seedling growth was observed in ABA and GB-treated plants in all cultivars. A considerable increase in lipid peroxidation, proline content, total antioxidant capacity and total flavonoid content in roots and leaves were recorded in all drought conditions, while these values were considerably reduced in ABA and GB treatments. Hierarchical clustering heatmap using stress tolerance index (STI) values showed that Drought + ABA and Drought + GB secured higher STI scores suggesting a greater degree of drought tolerance in all cultivars. In conclusion, seed and root priming of ABA and GB enhanced drought tolerance in the wheat seedlings by improving seedling growth and antioxidative defense suggesting a declined state of oxidative damage.

Keywords