Journal of Lipid Research (Jan 2015)

Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells

  • Elena Chiricozzi,
  • Maria Grazia Ciampa,
  • Giuseppina Brasile,
  • Federica Compostella,
  • Alessandro Prinetti,
  • Hitoshi Nakayama,
  • Roudy C. Ekyalongo,
  • Kazuhisa Iwabuchi,
  • Sandro Sonnino,
  • Laura Mauri

Journal volume & issue
Vol. 56, no. 1
pp. 129 – 141

Abstract

Read online

Lactosylceramide [LacCer; β-Gal-(1-4)-β-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[3H]LacCer-(N3) and C24-[3H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[3H]LacCer-(N3), but not C18-[3H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[3H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[3H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.

Keywords