BMJ Open (Apr 2016)
Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
Abstract
Introduction The Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) has been recommended for depression screening in medically ill patients. Many existing HADS-D studies have used exploratory methods to select optimal cut-offs. Often, these studies report results from a small range of cut-off thresholds; cut-offs with more favourable accuracy results are more likely to be reported than others with worse accuracy estimates. When published data are combined in meta-analyses, selective reporting may generate biased summary estimates. Individual patient data (IPD) meta-analyses can address this problem by estimating accuracy with data from all studies for all relevant cut-off scores. In addition, a predictive algorithm can be generated to estimate the probability that a patient has depression based on a HADS-D score and clinical characteristics rather than dichotomous screening classification alone. The primary objectives of our IPD meta-analyses are to determine the diagnostic accuracy of the HADS-D to detect major depression among adults across all potentially relevant cut-off scores and to generate a predictive algorithm for individual patients. We are already aware of over 100 eligible studies, and more may be identified with our comprehensive search.Methods and analysis Data sources will include MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, PsycINFO and Web of Science. Eligible studies will have datasets where patients are assessed for major depression based on a validated structured or semistructured clinical interview and complete the HADS-D within 2 weeks (before or after). Risk of bias will be assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Bivariate random-effects meta-analysis will be conducted for the full range of plausible cut-off values, and a predictive algorithm for individual patients will be generated.Ethics and dissemination The findings of this study will be of interest to stakeholders involved in research, clinical practice and policy.