Communications Biology (Jun 2024)

Circadian-driven tissue specificity is constrained under caloric restricted feeding conditions

  • Renrui Chen,
  • Ziang Zhang,
  • Junjie Ma,
  • Bing Liu,
  • Zhengyun Huang,
  • Ganlu Hu,
  • Ju Huang,
  • Ying Xu,
  • Guang-Zhong Wang

DOI
https://doi.org/10.1038/s42003-024-06421-0
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Tissue specificity is a fundamental property of an organ that affects numerous biological processes, including aging and longevity, and is regulated by the circadian clock. However, the distinction between circadian-affected tissue specificity and other tissue specificities remains poorly understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that approximately 35% of tissue-specific genes are directly affected by circadian regulation. These circadian-affected tissue-specific genes have higher expression levels and are associated with metabolism in hepatocytes. They also exhibit specific features in long-reads sequencing data. Notably, these genes are associated with aging and longevity at both the gene level and at the network module level. The expression of these genes oscillates in response to caloric restricted feeding regimens, which have been demonstrated to promote longevity. In addition, aging and longevity genes are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-affected tissue specificity is essential for understanding the circadian mechanisms that regulate aging and longevity at the genomic level.