Biosensors (May 2022)

An Artifact-Resistant Feature SKNAER for Quantifying the Burst of Skin Sympathetic Nerve Activity Signal

  • Yantao Xing,
  • Yike Zhang,
  • Zhijun Xiao,
  • Chenxi Yang,
  • Jiayi Li,
  • Chang Cui,
  • Jing Wang,
  • Hongwu Chen,
  • Jianqing Li,
  • Chengyu Liu

DOI
https://doi.org/10.3390/bios12050355
Journal volume & issue
Vol. 12, no. 5
p. 355

Abstract

Read online

Evaluation of sympathetic nerve activity (SNA) using skin sympathetic nerve activity (SKNA) signal has attracted interest in recent studies. However, signal noises may obstruct the accurate location for the burst of SKNA, leading to the quantification error of the signal. In this study, we use the Teager–Kaiser energy (TKE) operator to preprocess the SKNA signal, and then candidates of burst areas were segmented by an envelope-based method. Since the burst of SKNA can also be discriminated by the high-frequency component in QRS complexes of electrocardiogram (ECG), a strategy was designed to reject their influence. Finally, a feature of the SKNA energy ratio (SKNAER) was proposed for quantifying the SKNA. The method was verified by both sympathetic nerve stimulation and hemodialysis experiments compared with traditional heart rate variability (HRV) and a recently developed integral skin sympathetic nerve activity (iSKNA) method. The results showed that SKNAER correlated well with HRV features (r = 0.60 with the standard deviation of NN intervals, 0.67 with low frequency/high frequency, 0.47 with very low frequency) and the average of iSKNA (r = 0.67). SKNAER improved the detection accuracy for the burst of SKNA, with 98.2% for detection rate and 91.9% for precision, inducing increases of 3.7% and 29.1% compared with iSKNA (detection rate: 94.5% (p p p p = 0.07 in the fourth period, p p = 0.11 in the sixth period). The newly developed feature may play an important role in continuously monitoring SNA and keeping potential for further clinical tests.

Keywords