Entropy (Nov 2022)
A Reverberation Suppression Method Based on the Joint Design of a PTFM Waveform and Receiver Filter
Abstract
Transmitting waveform design and signal processing method optimization are effective ways to improve a sonar system’s detection performance. In this study, the spectrum and ambiguity function characteristics of pulse trains of frequency modulation (PTFM) signals were deduced and analyzed to address the problem of serious reverberation interference in the detection of low-speed targets in shallow water environments. The action mechanisms of PTFM signal parameters on the comb spectrum and bed of nails ambiguity function were identified. PTFM signal parameters were designed according to reverberation suppression requirements. The threshold was calculated using the estimate-before-detect method, and the comb spectrum waveform cognitive filtering detection algorithm is proposed. The simulation and lake experimental results show that the PTFM signals’ reverberation suppression ability for low-speed targets was better than it was for stationary or high-speed targets. The proposed method has good universality, which can improve the output signal-to-reverberation ratio (SRR) by more than 6 dB.
Keywords