Remote Sensing (Nov 2014)

Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR Data

  • Connie Ko,
  • Gunho Sohn,
  • Tarmo K. Remmel,
  • John Miller

DOI
https://doi.org/10.3390/rs61111225
Journal volume & issue
Vol. 6, no. 11
pp. 11225 – 11243

Abstract

Read online

This paper presents a hybrid ensemble method that is comprised of a sequential and a parallel architecture for the classification of tree genus using LiDAR (Light Detection and Ranging) data. The two classifiers use different sets of features: (1) features derived from geometric information, and (2) features derived from vertical profiles using Random Forests as the base classifier. This classification result is also compared with that obtained by replacing the base classifier by LDA (Linear Discriminant Analysis), kNN (k Nearest Neighbor) and SVM (Support Vector Machine). The uniqueness of this research is in the development, implementation and application of three main ideas: (1) the hybrid ensemble method, which aims to improve classification accuracy, (2) a pseudo-margin criterion for assessing the quality of predictions and (3) an automatic feature reduction method using results drawn from Random Forests. An additional point-density analysis is performed to study the influence of decreased point density on classification accuracy results. By using Random Forests as the base classifier, the average classification accuracies for the geometric classifier and vertical profile classifier are 88.0% and 88.8%, respectively, with improvement to 91.2% using the ensemble method. The training genera include pine, poplar, and maple within a study area located north of Thessalon, Ontario, Canada.

Keywords